SHORT-RANGE PREDICTION OF A MEDITERRANEAN SEVERE WEATHER EVENT USING EnKF: CONFIGURATION TESTS

D. S. Carrio, V. Homar

diego.carrio@uib.es, victor.homar@uib.cat Grup de Meteorologia. Departament Física. Universitat de les Illes Balears (UIB)

OUTLINE

PART I

- Motivation
- Case presentation
- Methodology
- Tools and Data
- Experiments
- Results
- Conclusions

PART II

Future Work

PART I

MOTIVATION

- Current operational forecasts still fail to predict severe mesoscale events
- Improve mesoscale forecasts to be able to enhance warning systems (mitigation)
- Investigate the skill of a mesoscale ensemble data assimilation (EnKF)
- Predict various aspects of the squall line occurred on 4th October 2007
- Compare EnKF performance against straightforward downscaling strategies

MOTIVATION

- Current operational forecasts still fail to predict severe mesoscale events
- Improve mesoscale forecasts to be able to enhance warning systems (mitigation)
- Investigate the skill of a mesoscale ensemble data assimilation (EnKF)
- Predict various aspects of the squall line occurred on 4th October 2007
- Compare EnKF performance against straightforward downscaling strategies

• Location of Mallorca:

Area most Affected by Squall Line

• Severe weather event during the afternoon on **October 4th of 2007** in Palma de Mallorca:

• Severe weather event during the afternoon on **October 4th of 2007** in Palma de Mallorca:

• One person killed and huge damage to property in the industrial area estimated at 10 M €

Meteorological synoptic situation from ECMWF (*) on 4 October 2007 at 00:00 UTC

850 hPa geopotential height (blue contours) and temperature (colour filled contours)

500 hPa geopotential height (colour filled contours) and sea level pressure (blue contours)

(*) ECMWF: European Center for Medium-Range Weather Forecasts

Squall line organization, initiated in the morning offshore Murcia

Composite image:
Reflectivity
Radar 11:00 UTC
And Meteosat Visible
(squall line organization)

Composite image:
Reflectivity
Radar 15:00 UTC
And Meteosat Visible
(initation)

IR MSG-2, 4 Oct at 15:12 UTC (cloud top temperatures)

Reflectivity Radar (Valencia) at 15:20 UTC

• Squall line organization, initiated in the morning offshore Murcia

A) TOOLS AND DATA

A) TOOLS AND DATA

Characteristics of the EnKF

Members of Ensemble: 24

Boundary and Initial Conditions from EPS ECMWF (3h)

1h assimilation cycle with in-situ observations from MADIS

Data assimilated from MADIS (Meteorological Assimilation Data Ingest System) source

Number and type of observations provided to the EnKF assimilation system (4 Oct 2007 00-06 UTC)

A) TOOLS AND DATA

• WRF-ARW (Weather Research and Forecast) model V.3.4: Fully compressible,

non-hydrostatic model

Domain: 138x93 grid points
Δt=60s
Δx=16km
Vertical levels=50
Number members of ensemble=24
Initial/Boundary Conditions provided by ECMWF EPS

Multiphysic configurations: 24 members with 4 PBL schemes, 3 prescribed concentrations of cloud condensation nuclei and 2 cumulus schemes:

PBL	YSU	MYJ	ACM2	MYNN2
CCN	1,5E9	1,0E9	0,5E9	
Cumuls	Kain-Fritsch	New Simplied Arakawa- Schubert		

B) EXPERIMENTS

B) EXPERIMENTS

(ECMWF)

(ECMWF)

03H

(ECMWF)

02H

00H

(ECMWF)

01H

04H

(ECMWF)

- CAPE + CIN mean
- CAPE + CIN maximum
- Divergence and convective activity
- Probability of Severe Weather (PoS)

- CAPE + CIN mean
- CAPE + CIN maximum
- Divergence and convective activity
- Probability of Severe Weather (PoS)

- CAPE + CIN mean
- CAPE + CIN maximum
- Divergence and convective activity
- Probability of Severe Weather (PoS)

DART:

Divergence (s^-1) and max. reflectivity (dBz)

EC DS 00:

Divergence (s^-1) and max. reflectivity (dBz)

EC_DS_06:

Divergence (s^-1) and max. reflectivity (dBz)

- CAPE + CIN mean
- CAPE + CIN maximum
- Divergence and convective activity
- Probability of Severe Weather (PoS)

CONCLUSIONS

- DART EnKF has shown large potential of these forecasting systems in advecting observational information from land sites toward data-void areas over the sea
- Improved representation of the mesoscale environment in which the system initiated and evolved which a more realistic distribution of CAPE and CIN values
- Better representation of the mesoscale environment leads to a superior quantification of the potential for severe derived from the EnKF than those derived by direct downscaling of ECMWF EPS forecass.

PART II

- Improve the assimilation over the Western Mediterranean which contains too few in-situ observations (most of the area is Sea), using data from remote sensing instruments:
- Satellite Data Assimilation

Radar Data Assimilation

➤ Other Experimental Assimilation of Experimental Observations

Lidar (terrestrial)

Constant-height balloons

Sodar

- ➤ Kilometric and Sub-Kilometric space resolution, to explore the prediction of convective modes (linear, scattered, MCS)
- What is the predictability limit of hight impact phenomena?
- ➤ Post-Process: What kind of tools we can use to take maximum advantage of the model's output information? (maximum updraft helicity o severity index, ...)
- > Verification:
 - Index Verification: Frequency Bias, Brier Skill, Equitable Threat Score, Attributes Diagram,...
 - Get useful information of our fields predicted: SAL (Structure Amplitude and Location), MODE (Method for Object-Based Diagnostic Evaluation)

SAL method

Convective Outlooks: Automatic generation of warnings

Convective Outlook

➤ Reproduce and design synthetic prediction fields, highly informative and easy to interpret directly for use in statal-regional weather services from Western Mediterranean region.

THANK YOU FOR YOUR ATTENTION

QUESTIONS, COMMENTS
OR REMARKS?

