Sub-hourly rainfall extremes in the Western Mediterranean Results from observations and a convection-permitting model

Daniel Argüeso UIB - 2 December 2021

Background

Changes in the Mediterranean

a) Precipitation

IPCC AR6

- Above average summer warming
- Less mean precipitation
- Increased rainfall seasonality
- Increased aridity

Changes in the Mediterranean

North

America

Type of observed change

Europe

- Above average summer warming
- Less mean precipitation
- Increased rainfall seasonality
- Increased aridity
- **Rainfall extremes?**

Type of observed change since the 1950s

Hourly vs daily changes

Changes in rainfall intensity: daily

Changes in rainfall intensity: hourly

Daily

Duration (hours)

Experiments

EPICC simulations

Elevation

WRF Experiments

Present

- 10 years at 2km
- ERA5 boundary conditions

Future

- 10 years at 2km
- PGW (ERA5 + 27 GCMs)

Both

- Explicit convection
- 10-min output for precip.

Comparison with observations

Observations

- Daily data:
 - 10, 20, 30-min daily maxima
 - 1, 2, 3, 6 and 12-h daily max
 - Daily total

Comparison of extremes WRF vs OBS

All-day 95th percentile

Comparison of 01H 95th (2011-2020)

1 value per day! Daily total Daily 1-h max Daily 10-min max

Comparison of extremes WRF vs OBS

All-day 99th percentile

Comparison of 01H 99th (2011-2020)

1 value per day! Daily total Daily 1-h max Daily 10-min max

Precipitation changes

Changes in mean rainfall

0 % 30

60

90

-30

-60

-90

Changes in extreme rainfall

Daily 99th percentile

All events! Daily, 10-y

99th ~ 36 events

Changes in extreme rainfall

10-min 99.99th percentile

Present

Changes in seasonal extreme rainfall

Day 99th percentile

Precipitation

DAY 99.00th percentile

DJF

0 30 60 90 -60 -30

All events! Daily, 10-y, season 99th ~ 9 events

Changes in seasonal extreme rainfall

Hourly 99.9th percentile

0 30 60

-60

-30

Precipitation

All events! Hourly, 10-y, season 99.9th ~ 22 events

Changes in seasonal extreme rainfall

10-min 99.99th percentile

Precipitation

All events! 10-min, 10-y, season 99.99th ~ 13 events

Intensity-duration changes

Changes in intensity-duration

Daily

Changes in intensity-duration

Resampling 10-min at different frequencies

Duration (hours)

Changes in intensity-duration

Daily

Duration (hours)

Conclusions

- Precipitation extremes and changes must be examined at hourly scales
- We need hourly (and sub-hourly) data to investigate extremes
- In the Med Sea, signs of more intense and shorter extremes with CC:
 - Despite large-scale circulation (less water supply).
 - Need to investigate mechanisms (dyn. vs thermodyn.)
 - Different response at different frequencies

EPICC (PID2019-105253RJ-I00 MCI/AEI/FEDER,UE)

TRAMPAS (PID2020-113036RB-I00 / AEI / 10.13039/501100011033)

