

NORTH ATLANTIC JET STREAM RESPONSE TO WARMING: TRENDS AND DRIVERS

Alejandro Hermoso, Sebastian Schemm, Gwendal Rivière, John Methven and Ben Harvey

TRAMPAS meeting 24/10/2023

INTRODUCTION

Jet stream

- Narrow and strong air currents flowing from west to east in both hemispheres
- Important influence on weather variability and extremes

Exemple of impact of jet variability (Santos et al. 2013)

Anomalies of zonal wind at 250 hPa

Anomalies of precipitation (top) and T2 (bottom)

Relevant processes

- Main mechanisms affeting the jet:
 - Areas of high baroclinictity -> development of Rossby waves -> eddy momentum flux convergence
- Local effect of diabatic heating
 - PV anomalies, which can intensify the jet

Objective and data

- Analysis of jet stream trends (observed and projected) in winter (DJF) over the North Atlantic
- Understanding the mechanism leading to the observed trends
- Data
 - **ERA5** (1979-2022)
 - Idealised 2D frontal-geostrophic simulation. Sawyer-Eliasen eqution with diabatic heating
 - Idealised aquaplanet simulations. Control and uniform warming (4 K) + SST front
 - CESM2 simulations: 5 ensemble members, 1980-2100, SSP370 from 2015

Trends in ERA5

Jet trends

Shading: zonal wind speed trend Black contours: climatological mean Stippling: non-significant trends

Intensification of the jet, slight poleward shift

Extension over Europe Slight equatorward shift downstream

E vector

$$\mathbf{E} = \left(\overline{\mathbf{v'^2} - \mathbf{u'^2}}, \overline{-\mathbf{u'v'}}, \frac{\mathbf{f}}{\partial \theta / \partial \mathbf{p}} \mathbf{v'\theta'} \right)$$

Horizontal components: Eddy momentum flux

Vertical component: Eddy heat flux

E vector divergence -> Eddy momentum convergence

E vector trends

Increase of eddy momentum convergence

around the jet core and equatorward downstream

Black contours: E vector divergenceclimatological mean
Green contours: Zonal wind trend (left)/ climatology (right)
Blue contours: Tropopause level (2PVU)
in first and last decade

Slope trends

Black contours: climatological mean

Green contours: Zonal wind speed climatology

Purple contour: Region of strongest potential

Slope increse around the climatological jet position over the Gulf stream and downstream

temperature trend

Blue contours: Tropopause level (2PVU) in first and last decade

Diabatic heating and advection trends

Increase over the Gulf Stream

North of area of strongest potential temperature trend

Reduced cold advection over western NA -> reduced land-sea contrast

Coincident with area of strongest potential temperature trend

Diabatic heating trend (300 – 850 hPa)

Advection trend (300 – 850 hPa)

Semi-geostrophic simulation: Local effect of diabatic heating

2D semi-gesotrophic simulation

- Evolution of a zonally symmetric flow on an f-plane
- Zonal momentum m=u-fy and θ advected on a y-z plane and modified by heating
- Meridional circulation obtainned from thermal wind balance between m and $\boldsymbol{\theta}$
- The elliptic Sawyer-Eliassen equation for the streamfunction provided that PV is positive over the entire domain

2D semi-gesotrophic simulation: Setup

Meridional direction

PV (shading zonal mean wind (green contour)
Potential temperature
Diabatic heating (black contours)

2D semi-gesotrophic simulation: Results

- Negative PV anomaly above heating
- Intensification and slight poleward shift of the zonal wind (shading)
- Similar to zonal wind trend in ERA5 in the entrance region

Meridional direction

PV anomaly (red/blue contours)

Initial zonal mean wind (green contour)

Diabatic heating (black contours)

Change in zonal wind (shading)

Aquaplanet simulations: Eddy-mean flow feedback

Aquaplanet simulations: Setup

- ICON model v2.6.5, 80 km horizontal resolution
- Control simulation: Baseline SST profile +
 SST front (idealized land-sea contrast) at
 30°W and different latitudinal positions (38,
 39 and 43°N)
- Warmed simulation: Same setup with uniform warming (4K)

Aquaplanet simulations (front at 39N)

Slope difference/ zonal wind climatology (cntl)

Sensitivity to SST position

Fully-coupled CESM simulations

CESM simulations

- Community Earth System model version 2.1.2
- Fully-coupled model
- 1° horizontal resolution
- Historical forcing up to 2015 and SSP3-7.0 emissions scenario from 2015 onwards
- 5 ensemble members

CESM trends (ensemble mean 1980-2022)

Increase of baroclinicity coincident with positive jet trend

Zonal wind trend at 250 hPa

Slope trend (zonal mean 80 – 15 W)

Some individual members (1980-2022)

Zonal wind trend (250 hPa)

Slope trend (zonal mean 80 – 15 W)

Conclusions

 The North Atlantic jet strem has slightly shifted poleward over the Gulf Stream and equatorward downstream

 The increase in diabatic seems to be responsible for the local jet trends

• An increase in baroclinicity and eddy momentum convergence accelerates the jet in a zonal band, extending over Europe

 These mechanisms are mostly reproduced in an aquaplanet setup, except the diabatic heating

Trends in the fully-coupled climate model are different from ERA5 over the Gulf Stream

