Reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones

M.Angels Picornell

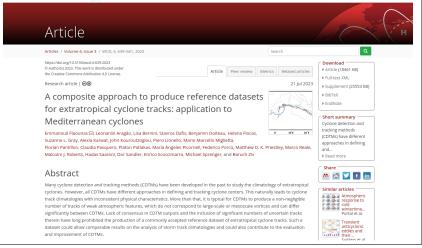
D. T. AEMET en Illes Balears

TRAMPAS (PID2020-113036RB-I00 / AEI / 10.13039/501100011033)

M. A. Picornell (AEMET IB)

Reference cyclone tracks

TRAMPAS, October 2023 1 / 21


$\label{eq:MedCyclones Cost Action 19109} \\ WG \mbox{ Tracks Task Team } -> 3T \mbox{ initiative } \\$

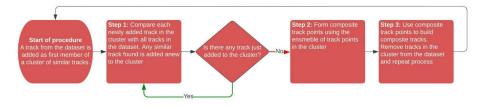
- Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies.
- We present a new methodological approach that combines tracks from individual CDTMs to produce new composite tracks.
- Aim: To obtain composite tracks that can be used as reference datasets for climatological research in the Mediterranean.

Weather and Climate Dynamics

ARTICLES & PREPRINTS ▼ SUBMISSION POLICIES ▼ PEER REVIEW ▼ EDITORIAL BOARD ABOUT ▼ EGU PUBLICATIONS 4

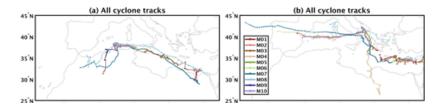
The database of tracks is available for the community.

M. A. Picornell (AEMET IB)

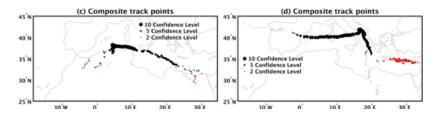

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

CDTMs are based on a serie of arbitrary choices:

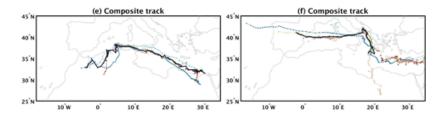
- the atmospheric variables to best describe cyclones
- the preprocessing operations
- the criteria to define cyclone centers
- the adopted approaches to track centers in time
- Ocyclone centers are tipically defined as local maxima of relative vorticity or as local minima of geopotential height or MSLP
- All CDTMs connect centres found in successives time steps to describe the desplacement of the same single cyclone system.
 Maximum distance between two centres in consecutive time steps.


Code	Main references for method description	Variable used to identify cyclone centers
M01*	Aragão and Porcù (2022)	Geopotential height at 1000 hPa
M02*	Flaounas et al. (2014)	MSLP
M03*	Ziv et al. (2015)	MSLP
M04*	Ayrault (1998), Sanchez-Gomez and Somot (2018)	Relative vorticity field at 850 hPa and MSLP
M05*	Ragone et al. (2018)	MSLP
M06*	Picornell et al. (2001), Campins et al. (2006)	MSLP
M07	Hodges (1994, 1995), as applied in Priestley et al. (2020)	Relative vorticity field at 850 hPa
M08*	Lionello et al. (2002), Reale and Lionello (2013)	MSLP
M09	Ullrich et al. (2021), Zarzycki and Ullrich (2017)	MSLP
M10	Wernli and Schwierz (2006), Sprenger et al. (2017)	MSLP

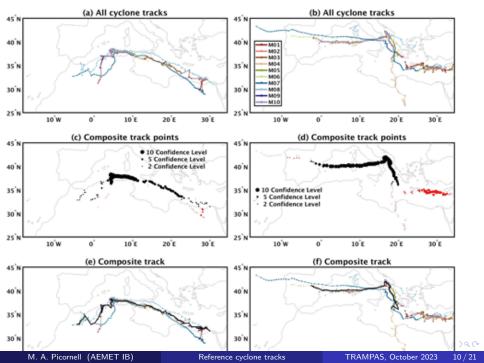
- ERA5 reanalysis, hourly, 0.25°x0.25°
- 42-year period of 1979–2020
- 25 track points

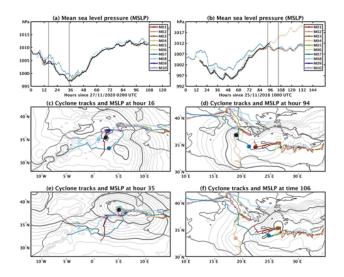

- Step 1. "Similar tracks": their track points overlap in space and time.
- Step 2. **Composite track points**: average locations of all track points identified as similar in step 1
- Step 3. Composite track built from composite track points.

(日)


Step 1. "Similar tracks": their track points overlap in space and time.

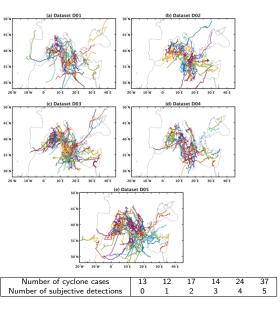
- Spatial overlapping: they occur at the same time at a distance < 300 km
- Temporal overlapping: time period in wich two tracks share the same segments (number of grid points that belong to the overlap between two tracks)

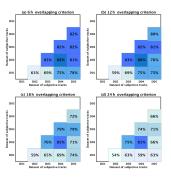

Step 2. **Composite track points**: average locations of all track points identified as similar in step 1


- **Confidence level**: number of methods used to create composite tracks. Measure of robustness, high or low agreement among CDTMs.
- Composite track points de higher c.l. tend to be concentrated in the middle section of the tracks

Step 3. **Composite track** built from composite track points. To connect two points

- must take place in consecutive time steps
- have to be located within the threshold distance
- two consecutives track point cannot have a confidence level of 1 (f)

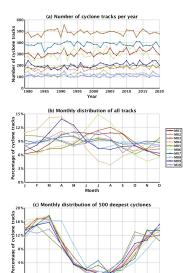

• After building a composite track, all of its composite track points have been assigned to the lower MSLP value within a 2.5° circular area


3 1 4 3

< □ > < 凸

- A major challenge in the field of cyclone tracking is the absence of reference datasets for benchmarking the performance of CDTMs
- The evaluation remains intuitive and relies on qualitative evaluation.
- Confidence level: measure of robustness
- Subjective tracking procedure:
 - to only document the clearest possible cyclone displacements.
 - 2 only retain tracks than last at least 24 h
 - only using MSLP fields
- 117 well-documented cyclone cases. The table of cyclones is available for the community.

Five datasets of subjective tracked cyclones



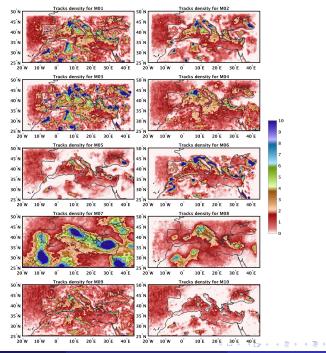
Similarity scores: number of similar tracks in 2 datasets divided by the number of tracks in the smallest dataset.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

M. A. Picornell (AEMET IB)

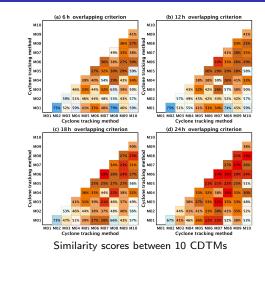
Mediterranean tracks from individual CDTMs

Month

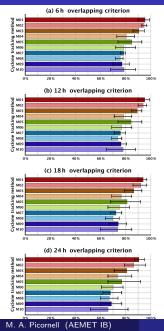

M. A. Picornell (AEMET IB)

F M

O N D

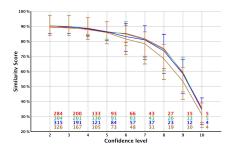

TRAMPAS, October 2023 14 / 21

A B A A B A



3

Similarity of outputs from individuaL CDTMs



Average similarity scores 10CDTMs -5 SUBTs

Reference cyclone tracks

4. Composite tracks compared to individual tracks

	м01	63%	79%	90%	95%	98%	99%	100%	100%	100%
-	M02	44%	63%	83%	93%	98%	99%	100%	100%	100%
method	M03	69%	73%	78%	81%	84%	90%	96%	100%	100%
		27%	38%	50%	63%	74%	85%	92%	97%	100%
cracking	M05	33%	43%	58%	71%	82%	91%	96%	99%	100%
trac	M06	48%	53%	60%	65%	72%	80%	85%	94%	100%
one	M07	46%	59%	66%	71%	76%	81%	86%	91%	100%
Cyclone	M08	27%	40%	50%	57%	62%	69%	77%	88%	100%
0	M09	39%	49%	59%	68%	76%	84%	88%	94%	100%
	м10	27%	35%	47%	59%	69%	77%	86%	94%	100%
	2 3 4 5 6 7 8 9 10 Confidence level									

Similarity scores composite tracks -5 SUBTs, overlapping criteria 6 (red), 12 (green), 18 (blue), 24 (brown)

Contribution of CDTMs to the production of composite tracks (12h criterion) $% \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \left(\frac$

ld

00000001

00000001

lon

-017.750

-017.447

ERA5 1979–2020

	0000001	011.441	0040.105	1313	01	05	02	00555.10
1979–2020	00000001	-016.979	0048.143	1979	01	03	03	00992.60
1919 2020	00000001	-016.344	0048.078	1979	01	03	04	00991.93
	00000001	-015.679	0048.031	1979	01	03	05	00990.32
	00000001	-015.096	0048.043	1979	01	03	06	00988.34
TRACKS_CL2.dat	00000001	-014.640	0048.105	1979	01	03	07	00986.10
TRACK5_CL2.dat	00000001	-014.321	0048.183	1979	01	03	08	00984.71
TRACKS_CL3.dat	00000001	-014.112	0048.237	1979	01	03	09	00983.51
TRACKS_CES.dat	00000001	-013.961	0048.230	1979	01	03	10	00984.09
TRACKS_CL4.dat	00000001	-013.817	0048.139	1979	01	03	11	00983.95
TRACKS_CE4.dat	00000001	-013.637	0047.966	1979	01	03	12	00984.22
TRACKS_CL5.dat	00000001	-013.376	0047.738	1979	01	03	13	00983.72
110101020201001	00000001	-012.993	0047.475	1979	01	03	14	00983.26
TRACKS_CL6.dat	00000001	-012.464	0047.212	1979	01	03	15	00983.32
	00000001	-011.775	0046.999	1979	01	03	16	00983.38
TRACKS_CL7.dat	00000001	-010.957	0046.853	1979	01	03	17	00983.61
	00000001	-010.100	0046.754	1979	01	03	18	00983.78
TRACKS_CL8.dat	00000001	-009.294	0046.692	1979	01	03	19	00983.39
	00000001	-008.582	0046.674	1979	01	03	20	00983.19
TRACKS_CL9.dat	00000001	-007.957	0046.690	1979	01	03	21	00983.18
	00000001	-007.390	0046.717	1979	01	03	22	00984.60
TRACKS_CL10.dat	00000001	-006.871	0046.738	1979	01	03	23	00984.20
	00000001	-006.396	0046.756	1979	01	04	00	00983.80
	·							

lat

0048.120

0048.163

уу

1979

1979

(ㅁ) 《畵》 《들》 《돌

dd hh

03

03 02

01

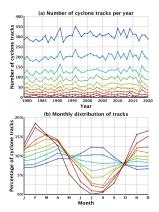
mm

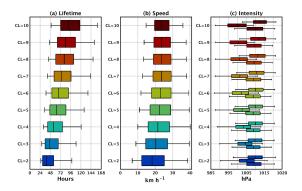
01

01

MSLP

00995.45


00993.78


M. A. Picornell (AEMET IB)

TRAMPAS, October 2023 18 / 21

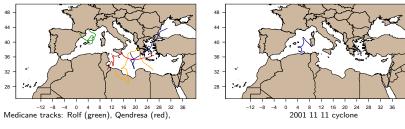
э


Composite tracks

イロト イボト イヨト イヨ

Composite tracks

5 < Confidencelevel < 7: Climatological studies


8 < Confidencelevel < 10: To analyze most intense cyclones

M. A. Picornell (AEMET IB)

Reference cyclone tracks

TRAMPAS, October 2023 20 / 21

Composite tracks

Zorba (blue) and Ianos (yellow) from TRACKS09.dat

from TRACKS08.dat

э